PHOSPHORUS DIENIC LIKE SYSTEMS 1

Anne-Marie Caminade, Christian Roques, Nathalie Dufour, Dominique Colombo, Frédéric Gonce, Jean-Pierre Majoral*

Laboratoire de Chimie de Coordination du CNRS, 205, route de Narbonne 31077 Toulouse Cedex, France

Summary: P halogenated dicoordinated phosphorus species 1 and 2 react with N or C silvlated derivatives leading to phosphorus dienic like systems 6-15.

Intermolecular elimination of chlorosilane between halogenated and silylated compounds is a classical reaction leading to a variety of substituted species in organic and organometallic chemistry. Phosphorus compounds in particular coordination and bonding were also obtained using this method. Indeed diphospha-2,3 butadienes $(Me_3Si)_2C=P-ER_2$ were prepared by mixing the chlorophospha-alkene 1 $(Me_3Si)_2C=P-Cl$ with $Me_3Si-P=CR_2$.

We took advantage of such a reaction to prepare new low coordinated phosphorus conjugated dienic like systems by adding to the chlorophospha-alkene 1 4 or the chlorophospha-imine 2 5 , monosilylated imines 3a, b, c, R¹R²C=N-SiMe₃ (3a, R¹= Ph, R²= H; 3b, R¹= Me, R²= OSiMe₃; 3c, R¹=R²= Ph) monosilylated iminophosphoranes 4a, b, R₃P=NSiMe₃ (4a, R= Ph; 4b, R= NMe₂)(Scheme I).

Scheme I

In a typical experiment 10^{-2} mol of 1 or 2 in 15 ml of dichloromethane is added over a period of 5 minutes, at room temperature to a dichloromethane solution (15 ml) of the N or C silylated product. As soon as the addition is over, solvent and chlorotrimethylsilane are removed under reduced pressure leading to the expected phosphorus dienes 6-14 in near quantitative yields. 10 can directly be obtained by reacting the lithium derivative Ph₂C= NLi with 1.

Furthermore easy access to original $R_3P=C-P=CR'_2$ species like 15 was found when 2 equivalents of the ylide $Ph_3P=CH_2$, 5 are treated with one equivalent of the chlorophospha-alkene 1 (Scheme II).

Scheme II

The exact formulation of **6-15** has been mainly established by NMR, IR and mass spectroscopies. For example all these compounds exhibit characteristic ^{31}P chemical shifts (from 234.8 to 359.7 ppm, see Table I) for dicoordinated phosphorus species, while IR spectra show unequivocal absorptions due to $v_{(P=N)}$ and $v_{(C=N)}$ respectively in the regions 1350-1280 and 1700-1600 cm⁻¹.

Most of these derivatives are stable at 0°C. If a large number of cyclic dicoordinated phosphorus derivatives stabilized by conjugation are described, the corresponding linear species are not well known: only a few compounds of this type are reported till now 2.3.6.

On the other hand crowded halogenophosphines 16-22 are directly formed when a dichloromethane solution of the starting phospha-alkene 1 or the phospha-imine 2 are mixed and stirred for 2 hours at room temperature with the silylated products 3a, b and 4a, b. The formation of chlorophosphines 16-22 result from the 1-2 addition of trimethylchlorosilane either on -P=C or -P=N-fragments.

Indeed these reactions allow to prepare bulky chlorophosphines impossible or difficult to obtain by classical ways. For example the dichlorophosphine (Me₃Si)₃CPCl₂ does not react - or react very slowly- with **3a**, **b** or **4a**, **b** in the same experimental conditions. Investigations on the reactivity of these new systems are underway.

Table I
31P Chemical shifts of the phosphorus dienic like systems 6-15
and of the chlorophosphines 16-22 in CHCl₃.

Compounds	δppm	² J _{PP} (Hz)	Compounds	δррт	² J _{PP} (Hz)
Ph ₃ P _A =N-P _B =C(SiMe ₃) ₂ 6	$\delta_A = 15$ $\delta_B = 356$	42	Ph ₃ P=N-P-C(SiMe ₃) ₃ Cl 16	$\delta_{A} = 19.1$ $\delta_{B} = 208.9$	75.6
(Me2N)3PA=N-PB=C(SiMe3)2 7	$\delta_{A} = 32.6$ $\delta_{B} = 359.7$	43.4	$(Me_2N)_3P_A=N-P_B-C(SiMe_3)_3$ Cl 17	$\delta_{A} = 33.9$ $\delta_{B} = 212.8$	79.1
Ph-C=N-P=C(SiMe ₃) ₂ H 8	355.3		Ph-C=N-P-C(SiMe ₃) ₃ H Cl 18	100.7	
Me ₃ SiO-C=N-P=C(SiMe ₃) ₂ Me 9	328.7		Me ₃ SiO-C=N-P-C(SiMe ₃) ₃ Me Cl 19	91.1	
Ph-C=N-P=C(SiMe ₃) ₂ Ph 10	322.8				
Ph ₃ P _A =N-P _B =N-Ar 11	$\delta_{A}=5.4$ $\delta_{B}=237.$	28.2	Ph ₃ P _A =N-P _B -N-Ar Cl SiMe ₃ 20	$\delta_{A} = 12.1$ $\delta_{B} = 173.8$	69
(Me2N)3PA=N-PB=N-Ar 12	$\delta_{A} = 27.2$ $\delta_{B} = 234.$	25	(Me2N)3PA=N-PB-N-Ar $Cl SiMe3$ 21	$\delta_A = 25.5$ $\delta_B = 173.7$	70.7
Ph-C=N-P=N-Ar H	267		Ph-C=N-P-N-Ar H Cl SiMe ₃ 22	133.8	
Me ₃ SiO-Ç=N-P=N-Ar H 14	268.2				
Ph ₃ P _A =Ç-P _B =C(SiMe ₃) ₂ H 15	δ_{A} =20.4 δ_{B} =336	100			

- (1) Presented in part at the XIth International Conference on Phosphorus Chemistry Tallinn (USSR) july 2-6, 1989.
- (2) R. Appel, V. Barth, F. Knoch, Chem. Ber., 116, 938, 1983
- (3) L.N. Markovskii, V.D. Romanenko, L.S. Kachkovskaya, M.I. Povolotskii, I.I. Patsanovskii, Yu.Z. Stepanova, E.A. Ishmaeva, Zh. Obsch. Khim. 57, 901, 1987; CA 108: 204691j (1988)
- (4) R. Appel, F. Knoll, I. Ruppert, Angew. Chem., 93, 771, 1981.
 Angew. Chem. Int. Ed. Engl., 20, 731, 1981.
- E. Niecke, M. Nieger, F. Reichert, Angew. Chem., 100, 1781 1988.
 Angew. Chem. Int. Ed. Engl., 27, 1715, 1988.
- (6) R. Appel, V. Kündgen, F. Knoch, Chem. Ber., 118, 1352, 1985;
 L.N. Markovskii, V.D. Romanenko, T.V. Didvanko, Zh. Obsch. Khim., 53, 1672, 1983;
 R. Appel, P. Fölling, W. Schuhn, F. Knoch, Tetrahedron Lett., 27, 1661, 1986;
 R. Appel, F. Knoch, R. Zimmermann, Chem. Ber., 118, 814, 1985.

(Received in France 4 September 1989)